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SUMMARY
Aging is classically conceptualized as an ever-increasing trajectory of damage accumulation and loss of
function, leading to increases inmorbidity andmortality. However, recent in vitro studies have raised the pos-
sibility of age reversal. Here, we report that biological age is fluid and exhibits rapid changes in both direc-
tions. At epigenetic, transcriptomic, and metabolomic levels, we find that the biological age of young mice
is increased by heterochronic parabiosis and restored following surgical detachment. We also identify tran-
sient changes in biological age during major surgery, pregnancy, and severe COVID-19 in humans and/or
mice. Together, these data show that biological age undergoes a rapid increase in response to diverse forms
of stress, which is reversed following recovery from stress. Our study uncovers a new layer of aging dynamics
that should be considered in future studies. The elevation of biological age by stress may be a quantifiable
and actionable target for future interventions.
INTRODUCTION

The biological age of organisms is thought to steadily increase

over the life course. However, it is now clear that biological

age is not indelibly linked to chronological age: individuals can

be biologically older or younger than their chronological age im-

plies.1 Moreover, increasing evidence in animal models and

humans indicates that biological age can be influenced by dis-

ease,2 drug treatment,3 lifestyle changes,4 and environmental

exposures,5 among other factors. Despite the widespread

acknowledgment that biological age is at least somewhat

malleable, the extent to which biological age undergoes revers-

ible changes throughout life, and the events that trigger such

changes remain unknown.

DNA methylation (DNAm) clocks have emerged as the premier

tool to assess biological age and begin to answer these questions.
C

Such epigenetic aging clockswere innovated based on the obser-

vation that methylation levels of various subsets of CpG sites

throughout the genome predictably change over the course of

chronological age. First-generation human DNAm clocks6–8 are

constructed using machine learning approaches to build models

trained on and designed to predict chronological age. Since the

advent of DNAm clocks, both a suite of mouse DNAmclocks3,9–13

and second-generation human DNAm clocks14,15 have emerged.

Second-generation human DNAm clocks integrate numerous

phenotypicmeasuresofaging (and, insome instances,chronolog-

ical age) to produce ameasure ofmorbidity/mortality risk and bio-

logical age. Another recently reported second-generation

approach, called DunedinPACE, uses longitudinal phenotypic

training data to produce a measure of the rate of biological ag-

ing.16,17 DNAm clocks have excellent predictive ability and are

responsive to known anti-aging/lifespan extending interventions
ell Metabolism 35, 807–820, May 2, 2023 ª 2023 Elsevier Inc. 807
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such as caloric restriction.11 Although mechanistic questions on

the natureofDNAmclocks remain, these clocks represent the cur-

rent gold standard aging biomarker and are now widely utilized in

the aging field, including in human clinical trials.18

Here, we leverage the power of DNAm clocks in humans and

mice to measure reversible biological age changes in response

to various stressful stimuli. The use of transcriptomic andmetab-

olomic biomarkers supports this notion. We find that biological

age may increase over relatively short time periods in response

to stress, but this increase is transient and trends back toward

baseline following recovery from stress. Using various stressful

events to investigate this question, we further find that second-

generation human DNAm clocks give consistent outputs,

whereas first-generation human DNAm clocks generally lack

the sensitivity to detect transient changes in biological age.

Finally, using COVID-19 as a model of severe infectious disease

that triggers a reversible increase in biological age, we demon-

strate that recovery of biological age following a stress-induced

increase is a useful model with which to predict potential anti-ag-

ing drugs. Overall, our data suggest that increases in biological

age due to stress may be an actionable target for future anti-ag-

ing interventions.

RESULTS

Heterochronic parabiosis induces a reversible increase
in biological age
We began to examine possible fluctuations in biological age by

using a mouse model of heterochronic parabiosis.19,20 We

tested whether the exposure of young mice to aged circulation

would induce a change in biological age and whether such a

change is reversible. We surgically joined pairs of either

3-month-old mice (isochronic) or a 3-month-old mouse and a

20-month-old mouse (heterochronic). After 3 months of parabi-

osis, the pairs were separated and allowed to recover for

2 months (Figure 1A). Tissues from the young mice were then

analyzed using DNAm clocks, adjusting for chronological age

(see STAR Methods). The resulting DNAm age acceleration

parameter (i.e., chronological-age-adjusted DNAm age) allows

for unbiased statistical comparisons between age/treatment

groups. This is particularly important for human datasets (below)

where samples originate from subjects of diverse chronolog-

ical ages.

We first analyzed DNAm in liver, heart, brain, kidney, and adi-

pose tissue using the HorvathMammalMethylChip40, which re-

ports the methylation status of approximately 36,000 CpG sites

conserved across 159 mammalian species.21 Principle compo-
Figure 1. Young mice exposed to aged circulation undergo a reversibl
(A) Setup of parabiosis experiment. Young (3 months old) mice were surgically j

mouse (heterochronic) for 3 months. Following the parabiosis period, mice were

mice were analyzed using DNAm clocks to assess biological age.

(B) Principal component analysis of methylation data across tissues.

(C–E) DNAm age acceleration results for liver tissue from the HorvathMammalM

(F–H) DNAm age acceleration results for heart tissue using the pan-tissue (F), he

(I–K) Pan-tissue clock DNAm age acceleration results from brain (I), kidney (J), and

Sample sizes: (C–E), n = 6 for isochronic and isochronic recovery, and n = 5 for

heterochronic recovery, n = 2 for isochronic, and n = 4 for isochronic recovery. (

See also Figure S1.
nent analysis of the resultingmethylation profiles revealed strong

clustering by tissue (Figure 1B).We proceeded to apply a suite of

DNAm clocks to our methylation data. Compared with iso-

chronic controls, pan-tissue clocks (i.e., clocks trained on and

applicable to multiple tissues9), liver-specific clocks, and pan-

mammalian clocks trained on methylation data from 185

mammalian species22 revealed a significant increase in the bio-

logical age of livers of heterochronic parabionts (Figures 1C–1E

and S1A). Remarkably, the biological age of heterochronic para-

bionts returned to baseline following detachment and recovery

(Figures 1C–1E and S1A). Interestingly, we also observed a small

but significant decrease in the biological age of isochronic para-

bionts following recovery. We attribute this decrease to recovery

from the stress of the surgery and parabiosis procedure.

To substantiate these findings, we subjected liver samples

from our parabiosis animals to reduced representation bisulfate

sequencing (RRBS) and applied several epigenetic clocks

trained on RRBS data. We found good agreement with the

methylation microarray clocks above. RRBS clocks previously

developed by our laboratory10,11 fully recapitulated the revers-

ible increase in biological age in heterochronic parabionts, as

did the Stubbs et al.12 clock (Figure S1B). Biological ages of iso-

chronic vs. heterochronic parabionts were not significantly

different in theWang et al. clock,3 although the reversal of biolog-

ical age in heterochronic parabionts after recovery was signifi-

cant (Figure S1I). The Thompson et al. clock13 indicated a signif-

icant difference in biological age between isochronic and

heterochronic parabionts, but no significant DNAm age reversal

following recovery (Figure S1B). Overall, the trends in the data

were highly consistent in all clocks across both methylation

profiling platforms.

The effects we found in the liver were remarkably consistent

across the other tissues examined. The heart (Figures 1F–1H

and S1C), brain (Figures 1I and S1D), kidney (Figures 1J and

S1E), and adipose (Figures 1K and S1F) all underwent an in-

crease in biological age upon exposure to aged circulation with

a return to baseline following detachment. Thus, heterochronic

parabiosis induces a systemic increase in the biological age of

the young parabiont that is reversed following separation and

recovery.

Heterochronic parabiosis perturbs biological age at
transcriptomic and metabolomic levels
We next asked whether similar effects could be observed at the

level of gene expression and metabolites. Gene expression sig-

natures of aging23 for liver tissue and mice were significantly

positively enriched in heterochronic parabionts; this association
e increase in biological age
oined with either another young mouse (isochronic) or an old (20 months old)

separated and allowed to recover for a further 2 months. Tissues from young

ethyl40 pan-tissue (C), liver (D), and universal pan-mammalian (E) clocks.

art (G), and universal pan-mammalian (H) clocks.

adipose (K) tissues. p values were calculated with ANOVA and unpaired t tests.

heterochronic and heterochronic recovery. (F–G), n = 5 for heterochronic and

I–K), n = 5 for all conditions.

Cell Metabolism 35, 807–820, May 2, 2023 809
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Figure 2. Heterochronic parabiosis revers-

ibly perturbs biological age at the transcrip-

tomic and metabolomic levels

(A) Results of application of aging signatures to

sequenced RNA isolated from livers of young

heterochronic parabionts upon parabiosis (left)

and recovery (right).

(B) Correlation matrix between functions enriched

upon heterochronic parabiosis/recovery and

those enriched by signatures of aging.

(C) As in (B), but analyzed for enrichment at the

pathway level.

(D and E) Correlation of changes in age-related

metabolites between aging and heterochronic

parabiosis (D) or recovery (E).

Correlation coefficients and p values were calcu-

lated with either Spearman correlation (A–C) or

Kendall correlation (D and E).

See also Figure S2.

ll
Article
was lost upon recovery (Figure 2A). Similarly, a functional corre-

lation analysis revealed that functions associated with the gene

expression profiles of heterochronic parabionts positively corre-

lated with aging profiles constructed for liver tissue and for mice

(Figure 2B). Additionally, functional enrichment at the pathway

level further confirmed these results—we found a positive corre-

lation between heterochronic parabionts and signatures of ag-

ing. This trend was reversed upon recovery (Figure 2C;

Table S1).

Metabolomic profiling of livers also yielded consistent re-

sults: we observed a significant positive association with age-

related metabolites in the heterochronic parabionts

(Figures 2D and S2) and a significant inverse association

upon recovery (Figure 2E). Overall, these results demonstrate

that heterochronic parabiosis induces a transient increase in

biological age that manifests at the DNAm, transcriptomic,

and metabolomic levels.
810 Cell Metabolism 35, 807–820, May 2, 2023
Trauma surgery reversibly
increases the biological age of
elderly patients
Having demonstrated that a transient in-

crease inbiological agecanbeexperimen-

tally induced, we sought to identify ‘‘natu-

ral’’ situations that similarly cause a

reversible change in biological age. Given

the links between chronic stress and

accelerated biological age,24,25 we hy-

pothesized that an acute, highly stressful

health event might induce such a change.

To test this hypothesis, we examined

DNAm of blood samples from elderly

patients undergoing major surgery.26

Blood from these patients was taken at

three points: (1) immediately before

surgery, (2) the morning after surgery,

and (3) 4–7 days post-surgery, before

discharge from the hospital. Using

second-generation human DNAm clocks

(DNAmPhenoAge,14 DNAmGrimAge,15
and DunedinPACE17), we found a significant increase in biological

agemarkers of patients undergoing emergency surgical repair of a

traumatichip fracture.Remarkably, this increaseoccurred inunder

24 h, and biological age returned to baseline 4–7 days post-sur-

gery (Figures 3A–3C). Interestingly, two other non-trauma sur-

geries did not produce this effect. Patients undergoing elective

hip surgery showed an overall increase in biological age markers

following surgery, approaching an age acceleration of 0 (or a

DunedinPoAm score of just over 1) by the end of their hospitaliza-

tion (Figures 3D–3F).Wenote that these patients started at a lower

biological age relative to emergency patients (around �5 age ac-

celeration for DNAmPhenoAge and DNAmGrimAge, and 1 for

DunedinPoAm), likely reflecting the selection of otherwise healthy

surgical candidates and preoperative preparation for a planned

surgery.27 Finally, patients undergoing elective colorectal surgery

showed no significant changes in biological age markers over

the course of their care (Figures 3G–3I).
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Figure 3. Patients undergoing major emergency (but not elective) surgery experience a reversible increase in biological age

(A–C) Second-generation DNAm age biomarkers for patients undergoing emergency surgery to repair traumatic hip fractures determined using DNAmPhenoAge

(A), DNAmGrimAge (B), and DunedinPoAm38 (C).

(D–F) As above, but for patients undergoing elective hip surgery.

(G–I) As above, but for patients undergoing elective colorectal surgery.

In all panels, time point 1 corresponds to immediately before surgery; time point 2 corresponds to the morning after surgery; and time point 3 corresponds to the

day of discharge from the hospital, 4–7 days post-surgery. p values were calculated with repeated-measures ANOVA and paired t tests. Sample sizes: (A–C), n =

9; (D–F), n = 10; (G–I), n = 11.

See also Figure S3.
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In all three cohorts of surgical patients, first-generation DNAm

clocks (Horvath DNAm age,6 Hannum DNAm age,7 and skin and

blood DNAm age8) showed no significant changes (Figures S3A–

S3C). A recent study introduced principal component (PC) cor-

rected versions of themajor humanDNAmaging clocks to correct

for technical noise and improve the performance of the clocks on

longitudinal data.28 The application of these PC clocks to our data

yielded consistent resultswith the original versions of these clocks

(Figures S3D–S3F). In some cases, first-generation PC clocks re-

vealed significant changes that agreed with second-generation

clocks; however, second-generation PC clocks still showed
moreconsistent significantchangesoverall (weexplore this further

inotherdatasetsbelow).Most importantly, the trendsweobserved

using the original clocks agreedwith those revealed by PCclocks:

patients undergoing emergency hip surgery featured a reversible

increase in biological age markers, patients undergoing elective

hip surgery started at negative age accelerations and underwent

agradual increase towardbaseline, andelectivecolorectal surgery

had no effect on biological age markers.

We also utilized DNAm predictors of blood cell composition to

analyze blood cell dynamics in this cohort of patients.2,29 For pa-

tients undergoing emergency hip surgery, we found significant
Cell Metabolism 35, 807–820, May 2, 2023 811
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Figure 4. Mice and humans experience an increase in biological age over the course of pregnancy that is reversed following parturition

(A) Timeline of mouse pregnancy study. Note that ‘‘days’’ here refers to experimental days, not embryonic ages. Blood was collected from C57BL/6 mice before,

during, and after pregnancy, and DNA isolated from this blood was subjected to DNAm clock analysis.

(legend continued on next page)
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differences in the counts of B cells, several subsets of T cells,

plasmablasts, natural killer (NK) cells, and monocytes. Patients

undergoing elective hip surgery experienced significant fluctua-

tion in levels of plasmablasts, NKs, andmonocytes, and patients

undergoing elective colorectal surgery showed no significant

fluctuations in any of the cell types analyzed (Figures S3G–S3I).

Biological age of mice reversibly increases during
pregnancy
We further examined reversible changes in biological age by

testing the effect of pregnancy, given the significant biological

overlap between pregnancy and aging. Pregnancy is a highly

physiologically stressful event, with nearly every organ system

subject to increased demand to support the developing fetus.30

Because of the resulting damage accumulation and increased

incidence of age-related diseases such as diabetes and heart

disease, pregnancy has even been suggested as a model for ag-

ing.31 With these considerations in mind, we hypothesized that

biological age would increase over the course of pregnancy

and return to baseline following delivery.

We began by studying a mouse model of pregnancy.

Following a baseline blood sample, C57BL/6 mice were

mated, and two blood samples were taken during the early

and late phases of their pregnancies. Following parturition

and a period of recovery, a final blood sample was collected

(Figure 4A). We subjected DNA isolated from these blood

samples to the HorvathMammalMethylChip40 for methylation

profiling. The mouse blood clock revealed a significant

decrease in biological age following parturition (Figure 4B),

but no change in age-matched mice that were also mated

but did not become pregnant (Figure 4C). Interestingly, the

blood developmental clock showed an increase in biological

age after mice became pregnant that resolved following partu-

rition and recovery (Figure 4D). Again, no significant change

was detected by this clock in non-pregnant animals (Fig-

ure 4E). We suspect that since the developmental clock was

built using CpGs whose methylation levels change during

development, this clock may be more suitable to evaluate

pregnancy, a developmentally relevant process. In any event,

taking the two clocks together, we conclude that pregnancy

may induce a reversible increase in biological age.
(B and C) Blood clock DNAm age acceleration results from pregnant (B) and non

(D and E) Blood developmental clock DNAm age acceleration results from pregn

(F–H) Cross-sectional DNAm age acceleration analysis of pregnant America

DNAmGrimAge (G), and DunedinPACE (H).

(I–K) DNAm age biomarkers (as in F–H) for a longitudinal study of pregnant Africa

Time point 1 corresponds to 7–15 weeks of pregnancy; time point 2 correspond

(L andM) DNAmPhenoAge (L) and DNAmGrimAge (M) acceleration results fromSw

1 corresponds to pre-pregnancy; time point 2 corresponds to 10–14 weeks of pr

corresponds to 2–4 days postpartum.

(N) DNAmPhenoAge (adjusted for the passage of time; see STAR Methods for de

pregnancy and postpartum. Time point 1 corresponds to early pregnancy; time po

point 4 corresponds to 6 weeks postpartum. p values were calculated using eithe

post hoc pairwise comparison testing (see STARMethods). Sample sizes: (B and D

animals total fromwhich up to 4 sampleswere collected; (F–H), n = 9, 22, and 20 fo

who each provided up to 4 samples; (N), n = 14. Note that for the Born into Life C

necessary to analyze DunedinPACE. Note also that theWhite et al.32 dataset was

analysis to DNAm PhenoAge (N) and Horvath DNAm age (Figure S4D).

See also Figure S4.
Human pregnancy causes a reversible increase in
biological age
To corroborate and expand on our results in mice, we analyzed

methylation datasets from several cohorts of pregnant humans

(Table S2). Most available longitudinal methylation datasets

tracking women over the course of pregnancy cover the period

from pre-/early pregnancy up to (or very shortly after) delivery.

A cross-sectional dataset33 of 54 pregnant American women

from whom blood was sampled during one trimester of their

pregnancy showed no difference in DNAmPhenoAge accelera-

tion (Figure 4F), but a significant increase in biological age

markers from the first to third trimesters was found using

DNAmGrimAge (Figure 4G), and DunedinPACE revealed signifi-

cant increases between both the first to second and second to

third trimesters (Figure 4H). Similarly, DNAmGrimAge and

DunedinPACE, but not DNAmPhenoAge, revealed an increase

in biological age from early to late pregnancy in a longitudinal da-

taset34 consisting of African American women who each pro-

vided two blood samples over the course of their pregnancies

(Figures 4I–4K). In a cohort of pregnant Swedish women,35,36

both DNAmPhenoAge and DNAmGrimAge revealed a progres-

sive increase in biological age from pre-pregnancy (time point

1) to 2–4 days postpartum (time point 4) (Figures 4L and 4M).

Thus, biological age increases in human pregnancy up to the

point of parturition, consistent with the effects we found in

mice. As with our human surgery data analysis (Figure S3),

first-generation clocks did not detect any changes in these preg-

nancy datasets (Figures S4A–S4C). PC versions of first-genera-

tion clocks also did not detect significant changes in any of the

datasets to which we were able to apply them (Figures S4E–

S4G). PC versions of second-generation clocks yielded consis-

tent results with original clocks (Figures S4E–S4G).

We identified one dataset32 in which women were tracked

longitudinally over the course of their pregnancy through 6weeks

postpartum. However, methylation profiling for this cohort was

performed using the Illumina HumanMethylation27 beadchip,

which limited the number of clockswe could apply to theHorvath

multi-tissue clock and DNAmPhenoAge. DNAmPhenoAge (cor-

rected for the passage of time, as chronological ages were not

available for this dataset; see STAR Methods) revealed a trend

toward higher biological age at delivery, followed by a significant
-pregnant (C) mice.

ant (D) and non-pregnant (E) mice.

ns across the three trimesters of pregnancy using DNAmPhenoAge (F),

n Americans with two blood samples collected over the course of pregnancy.

s to 24–32 weeks of pregnancy.

edishmothers longitudinally tracked over the course of pregnancy. Time point

egnancy; time point 3 corresponds to 26–28 weeks of pregnancy; time point 4

tails) for a cohort of American mothers longitudinally tracked over the course of

int 2 corresponds to mid-pregnancy; time point 3 corresponds to delivery; time

r repeated-measures ANOVA and paired t tests or a mixed effects model with

), n = 8 animals total fromwhich up to 4 samples were collected; (C and E), n = 5

r trimesters 1, 2, and 3, respectively; (I–K), n = 53; (L andM), n = 33 total subjects

ohort, due to data sharing limitations, we were unable to obtain the CpG data

generated using the Illumina HumanMethylation27 Beadchip, which limited our
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Table 1. Metadata and descriptive statistics of the COVID-19

patient cohort

Female Male t test p value

n (%) 10 (34.5%) 19 (65.5%) –

Mechanically

ventilated (%)

10 (100%) 19 (100%) –

Age (SD) 59.53 (20.27) 61.39 (12.54) 0.7616

Duration of

hospitalization (SD)

30.9 (10.56) 43.68 (23.19) 0.1116

Duration of intensive

care (SD)

15.7 (7.0) 21.47 (14.94) 0.2602
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reversal of biological age markers at 6 weeks postpartum (Fig-

ure 4N), consistent with our mouse data above. Horvath DNAm

age closely mirrored the overall trend but did not rise to the level

of statistical significance (Figure S4D). Analyses of blood cell

composition predicted from methylation data for the human

pregnancy cohorts did not reveal consistent changes in cell

composition over the course of pregnancy between datasets

(Figures S4H–S4J). Thus, it is unlikely that changes in blood

composition alone can explain the highly consistent effects we

observe on biological age markers. Taking all our analyses in

mice and humans together, we conclude that pregnancy induces

a reversible increase in biological age markers, peaking around

delivery and resolving postpartum.

Severe COVID-19 causes a reversible increase in
biological age
We next hypothesized that severe infectious disease might

cause reversible changes in biological age markers. COVID-19

is an ideal test case given its strong links to aging.37,38 Not

only are the elderly up to 90-fold more vulnerable to death

from COVID-19,39 but we and others have previously reported

that accelerated biological age is associated with the incidence

and severity of COVID-19.40–44 Longitudinal biological age data

covering the COVID-19 disease course is also extremely limited.

A recent report included a subset of longitudinal samples, but the

sample size (n = 3) precluded any statistical analysis.44We there-

fore sought to investigate whether COVID-19 induces a revers-

ible change in biological age markers.

To directly test how biological age markers change over the

course of severe infectious disease, we obtained longitudinal

blood samples from patients with COVID-19. Our cohort

consisted of patients who tested positive for COVID-19 by RT-

PCR, were admitted to an intensive care unit, survived the dis-

ease, and provided multiple blood samples spanning the course

of their hospitalization (Table 1). Because the patients in our

cohort were generally already admitted to the ICU by the time

the first available blood sample was taken, we hypothesized

that the major effect we would observe was a reversal of already

accelerated biological agemarkers. Given the known differences

in both disease course and outcomes in males and females (with

males generally experiencing poorer outcomes45), we separated

our analysis by sex.

DNAmPhenoAge indicated a significant reversal of biological

age in females following discharge from the ICU (i.e., time points

3–4), but no significant change in males (Figure 5A). Similarly,
814 Cell Metabolism 35, 807–820, May 2, 2023
DNAmGrimAge indicated an increase in biological age that

was partially reversed by the time of ICU discharge for females.

This wasmarginally significant overall, and no significant change

was observed in males (Figure 5B). In both cases, we note that

male patients exhibited much more heterogeneity in the trajec-

tories of their biological age markers over the disease course.

In the case of DunedinPACE (in which the normal pace of aging

is 1), we found that the pace of aging was already elevated by

�25% by the point of ICU admission (time point 1) for both

sexes. This was reversed following discharge from the ICU,

although not fully to baseline (Figure 5C). As in all cases involving

human samples above, first-generation clocks did not detect

any changes in either males or females (Figures S5A and S5B).

PC clock results generally did not rise to the level of statistical

significance, although trends for second-generation PC clocks

were consistent with the original second-generation clocks

(Figures S5C and S5D). Few types of blood cells showed signif-

icant variation over the course of the disease, and those that did

(CD4+ T cells, plasmablasts, NKs, granulocytes) did not change

consistently betweenmale and female patients (Figures S5E and

S5F). On thewhole, we conclude that a severe infectious disease

such as COVID-19 can induce a reversible increase in biological

age, although the results are nuanced and seem to be both sex-

and clock-specific.

Reversal of elevated biological age can be used to
predict anti-aging interventions
The observed reversal in biological age markers of patients with

COVID-19 following discharge from the ICU provides a tool with

which to predict interventions that may potentially allow patients

to recover their biological age more rapidly following a stressful

event. We thus investigated the effect of experimental interven-

tions received by our COVID-19 patient cohort on their ability to

reverse their increased biological age. Largely due to the time-

frame during which these samples were collected (March–June

2020), this group of interventions included hydroxychloroquine,

remdesivir, and tocilizumab.46 We calculated biological age re-

covery by subtracting biological age at time point 4 (R7 days af-

ter ICU discharge) from time point 3 (ICU discharge). Neither the

anti-malarial hydroxychloroquine nor the broad-spectrum anti-

viral remdesivir showed any effects on biological age recovery

(Figures 5D and 5E). Interestingly, however, patients treated

with tocilizumab, a monoclonal antibody targeting the

interleukin-6 receptor, showed a greater recovery of biological

age (by all three second-generation clocks) than patients that

did not receive this intervention (Figure 5F). Thus, tocilizumab

may warrant further investigation as an anti-aging drug.

Common changes in DNAm across models of stress and
recovery
We finally sought to understand whether changes in methylation

induced by stress and/or recovery occurred at common CpG

sites between the various models we examined. The intersection

of significantly differentially methylated CpG sites across our hu-

man models revealed common sets of CpGs: 113 and 1,688

whose methylation increased and decreased, respectively,

upon exposure to stress (Figures S6A and S6B; Table S3), and

80 and 3 whose methylation increased and decreased, respec-

tively, upon recovery (Figures S6C and S6D; Table S3). We
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Figure 5. Patients with severe COVID-19 experience a reversible increase in DNAm age; treatment with tocilizumab enhances DNAm age

recovery following ICU discharge

(A–C) DNAm age acceleration results for DNAmPhenoAge (A), DNAmGrimAge (B), and DunedinPACE (C). All upper panels show data for female patients and all

lower panels showdata formale patients. Time point 1 is within 5 days of ICU admission; time point 2 is within 5 days of themidpoint of the ICU stay; time point 3 is

within 5 days of the date of discharge from the ICU; time point 4 is R7 days post-ICU discharge.

(D–F) DNAm age recovery, defined as the difference in DNAm age acceleration between time points 3 and 4), for patients treated with hydroxychloroquine (D),

remdesivir (E), or tocilizumab (F). In (A)–(C), p values were calculated using a mixed effects model with post hoc pairwise comparison testing. In (D)–(F), p values

were calculated with unpaired t tests. Sample sizes: (A–C), n = 10 female and n = 19 male subjects total who each provided up to 4 samples; (D), n = 19 untreated

and 10 treated patients; (E), n = 12 untreated and 17 treated patients; (F), n = 21 untreated and 8 treated patients.

See also Figure S5.
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note that the analysis of recovery is inherently limited by the use

of the HumanMethylation27 array for one of the recovery data-

sets, which only assays 27,000 CpGs. Nevertheless, these re-

sults demonstrate that a subset of CpGs may undergo common

changes in methylation levels upon exposure to diverse forms of

severe stress and upon recovery.

DISCUSSION

This study reveals that the biological age of humans and mice is

not static nor steadily increasing but undergoes reversible

changes over relatively short time periods of days to months ac-

cording to multiple independent epigenetic aging clocks. This

finding of fluid, fluctuating, malleable age challenges the long-

standing conception of a unidirectional upward trajectory of bio-

logical age over the life course. Previous reports have hinted at

the possibility of short-term fluctuations in biological age,47–51

but the question of whether such changes are reversible has, un-

til now, remained unexplored. Critically, the triggers of such

changes were also unknown. We established that a reversible

biological age change can be experimentally induced in animals

subjected to heterochronic parabiosis. An increase in biological

age upon exposure to aged blood is consistent with previous re-

ports of detrimental age-related changes upon heterochronic

blood exchange procedures.52–54 However, the reversibility of

such changes, as we observed (Figures 1, 2, and S1), has not

yet been reported. From this initial insight, we hypothesized

that other naturally occurring situationsmight also trigger revers-

ible changes in biological age.

A clear pattern that emerged over the course of our studies is

that exposure to stress increased biological age. When the

stress was relieved, biological age could be fully or partially

restored. This is perhaps most clearly demonstrated by our anal-

ysis of biological age changes in response to major surgery

(Figure 3). Although we did not observe the effect in the case

of elective surgeries, where patients are pre-screened for surgi-

cal candidacy and advised to follow strict preparation guide-

lines27 (likely reflected in the lower biological age found in these

patients on the day of their surgery), we saw a strong and rapid

increase in biological age in trauma patients following emer-

gency surgery. This is consistent with the higher risk of mortality

and major postoperative complications associated with emer-

gency hip repair.55 Nevertheless, this increase was reversed

and biological age was restored to baseline in the days following

the surgery. Of note, the patients in this cohort were elderly

(mean age 77.9 years), implying, surprisingly, that even people

of advanced chronological age have the capacity to reverse a

stress-induced increase in their biological age. Reversible

changes in biological age were also found in response to preg-

nancy and COVID-19, implying that such changes may be rather

common responses to stress. These situations (and others yet to

be discovered) that trigger a rapid increase in biological age are

likely good candidate models for testing the ability of anti-aging

drugs to improve clinical outcomes. Moreover, our finding that

biological age reversal is achievable on the scale of days

(Figures 3A–3C, cf. time points 2–3) strongly points to the poten-

tial utility of anti-aging drugs in diseases/medical interventions

that lead to increased stress, such as major surgery. The ability

of tocilizumab to enhance the biological age recovery of conva-
816 Cell Metabolism 35, 807–820, May 2, 2023
lescent COVID-19 patients (Figure 5F) lends further credence to

this notion.

From a technical standpoint, across human datasets exam-

ined, we consistently observed that first-generation DNAm

clocks were not able to detect significant effects found by

second-generation clocks applied to the same data, even af-

ter PC correction in nearly all cases.28 Interestingly, a recent

study examining the effects of adolescent habits on biological

aging reported a similar observation on first- vs. second-gen-

eration clocks,56 as have other recent studies.57 This may

imply that the integration of multiple age-related biomarkers

into the models of second-generation clocks renders them

more sensitive to transient fluctuations in biological age

compared with first-generation clocks, which are trained

only on chronological age. On the other hand, we were able

to observe fluctuations in the biological age of pregnant

mice using first-generation mouse clocks, though we suspect

that this is because inbred mice simply represent a biologi-

cally simpler system overall and far more mouse data is avail-

able with which to train first-generation clocks. Whatever the

underlying reason, these data highlight the critical importance

of the judicious selection of DNAm clocks appropriate to the

analysis at hand, especially in light of the many clocks contin-

uously coming to the fore. Nevertheless, we obtained consis-

tent outputs across second-generation clocks applied across

our human DNAm datasets, as well as the agreement with

mouse models in the case of pregnancy, bolstering our confi-

dence in our conclusions.

In the most fundamental sense, our data reveal the dynamic

nature of biological age: stress can trigger a rapid increase in

biological age, which can be reversed. Importantly, this implies

both the existence of intrinsic mechanisms to reverse increased

biological age and the opportunity to reverse transient increases

in biological age therapeutically. The findings also imply that se-

vere stress increases mortality, at least in part, by increasing bio-

logical age. This notion immediately suggests that mortality may

be decreased by reducing biological age and that the ability to

recover from stress may be an important determinant of suc-

cessful aging and longevity. Finally, biological age may be a use-

ful parameter in assessing physiological stress and its relief.

Limitations of the study
Although this study highlights a previously unappreciated aspect

of the nature of biological aging, we acknowledge some impor-

tant limitations. First, although we characterized our parabiosis

model at multiple omics levels, we relied mainly on DNAm clocks

to infer biological age in our human studies. This is because

these tools are the most powerful aging biomarker currently

available. It is our hope that as the ongoing expansion of the ag-

ing biomarkers field proceeds, additional biomarkers that rival or

exceed the power of DNAm clocks will allow us to confirm our

conclusions using orthogonal approaches to measure biological

age. Indeed, recent analyses of complete blood counts and

physical activity are consistent with our findings of fluctuations

in biological age across the entire life.49,50

Second, a critically important concern common to all studies

that utilize biomarkers of aging is the discrimination of bona

fide effects on biological aging from artifacts of the biomarkers.

By artifacts, we mean changes in biomarker predictions driven
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by something other than a true change in biological age, such as

an as-yet-identified component of the immune response.

Although no biomarker is perfect, several lines of evidence give

us confidence that our observations represent true modulations

of biological age: (1) DNAmage data in our parabiosis model was

highly consistent with analyses at the transcriptomic andmetab-

olomic levels; (2) where we were able to analyze across species,

the effects were consistent; (3) we observed effects consistently

with one class of DNAm biomarkers (second-generation clocks),

but not another (first-generation clocks). We would expect

artifactual ‘‘positive’’ results to occur randomly across the bio-

markers analyzed. Furthermore, diverse algorithms within the

second-generation clock class converge on the same results;

and (4) several distinct models—surgery, pregnancy, and

COVID-19—united by the severe physiological stress they

induce, caused similar effects on the biomarkers. Future work

will be needed to link, for instance, successful recovery of bio-

logical age following a stressful event to improved clinical

outcome.

Finally, our findings are limited in their ability to probe the con-

nections between short-term fluctuations in biological age and

lifelong biological aging trajectories. For instance, we observed

the postpartum recovery of biological age in pregnant subjects.

However, not all subjects seem to recover their biological age at

the same rate or to the same extent. Future work may focus on,

for example, the association of postpartum complications with

the rate/degree of biological age recovery following pregnancy.

Additionally, other reports indicate that increasing parity (i.e.,

number of pregnancies) is associated with accelerated DNAm

age.58,59 A key area for future study is understanding how tran-

sient elevations in biological age and/or successful recovery

from such increases may contribute to accelerated aging over

the life course.
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Nemeroff, C.B., Smith, A.K., Bradley, B., Heim, C., et al. (2015). Lifetime

stress accelerates epigenetic aging in an urban, African American cohort:

relevance of glucocorticoid signaling. Genome Biol. 16, 266. https://doi.

org/10.1186/s13059-015-0828-5.

26. Sadahiro, R., Knight, B., James, F., Hannon, E., Charity, J., Daniels, I.R.,

Burrage, J., Knox, O., Crawford, B., Smart, N.J., et al. (2020). Major sur-

gery induces acute changes in measured DNA methylation associated

with immune response pathways. Sci. Rep. 10, 5743. https://doi.org/10.

1038/s41598-020-62262-x.

27. Levett, D.Z.H., Edwards, M., Grocott, M., and Mythen, M. (2016).

Preparing the patient for surgery to improve outcomes. Best Pract. Res.

Clin. Anaesthesiol. 30, 145–157. https://doi.org/10.1016/j.bpa.2016.

04.002.

28. Higgins-Chen, A.T., Thrush, K.L., Wang, Y., Minteer, C.J., Kuo, P.L.,

Wang, M., Niimi, P., Sturm, G., Lin, J., Moore, A.Z., et al. (2022). A compu-

tational solution for bolstering reliability of epigenetic clocks: implications

for clinical trials and longitudinal tracking. Nat. Aging 2, 644–661. https://

doi.org/10.1038/s43587-022-00248-2.

29. Houseman, E.A., Accomando, W.P., Koestler, D.C., Christensen,

B.C., Marsit, C.J., Nelson, H.H., Wiencke, J.K., and Kelsey, K.T.

(2012). DNA methylation arrays as surrogate measures of cell mixture

distribution. BMC Bioinformatics 13, 86. https://doi.org/10.1186/

1471-2105-13-86.

30. Hill, C.C., and Pickinpaugh, J. (2008). Physiologic changes in pregnancy.

Surg. Clin. North Am. 88, 391–401. https://doi.org/10.1016/j.suc.2007.

12.005.

31. Giller, A., Andrawus,M., Gutman, D., and Atzmon, G. (2020). Pregnancy as

a model for aging. Ageing Res. Rev. 62, 101093. https://doi.org/10.1016/j.

arr.2020.101093.

32. White,W.M., Brost, B.C., Sun, Z., Rose, C., Craici, I., Wagner, S.J., Turner,

S., and Garovic, V.D. (2012). Normal early pregnancy: a transient state of

epigenetic change favoring hypomethylation. Epigenetics 7, 729–734.

https://doi.org/10.4161/epi.20388.

33. Guintivano, J., Arad, M., Gould, T.D., Payne, J.L., and Kaminsky, Z.A.

(2014). Antenatal prediction of postpartum depression with blood DNA

methylation biomarkers. Mol. Psychiatry 19, 560–567. https://doi.org/10.

1038/mp.2013.62.

34. Knight, A.K., Conneely, K.N., Kilaru, V., Cobb, D., Payne, J.L., Meilman, S.,

Corwin, E.J., Kaminsky, Z.A., Dunlop, A.L., and Smith, A.K. (2018).

SLC9B1 methylation predicts fetal intolerance of labor. Epigenetics 13,

33–39. https://doi.org/10.1080/15592294.2017.1411444.

35. Gruzieva, O., Merid, S.K., Chen, S., Mukherjee, N., Hedman, A.M.,

Almqvist, C., Andolf, E., Jiang, Y., Kere, J., Scheynius, A., et al. (2019).

https://doi.org/10.18632/aging.101168
https://doi.org/10.1093/eep/dvw006
https://doi.org/10.1186/gb-2013-14-10-r115
https://doi.org/10.1016/j.molcel.2012.10.016
https://doi.org/10.18632/aging.101508
https://doi.org/10.18632/aging.101508
https://doi.org/10.1101/2021.06.23.449634v2
https://doi.org/10.1101/2021.06.23.449634v2
https://doi.org/10.7554/eLife.40675
https://doi.org/10.1016/j.cmet.2017.03.016
https://doi.org/10.1186/s13059-017-1203-5
https://doi.org/10.1186/s13059-017-1203-5
https://doi.org/10.18632/aging.101590
https://doi.org/10.18632/aging.101414
https://doi.org/10.18632/aging.101684
https://doi.org/10.7554/eLife.54870
https://doi.org/10.7554/eLife.73420
https://doi.org/10.1111/acel.13028
https://doi.org/10.4161/cc.20437
https://doi.org/10.1101/2021.11.11.468258
https://doi.org/10.1101/2021.11.11.468258
https://doi.org/10.1038/s41467-022-28355-z
https://doi.org/10.1038/s41467-022-28355-z
https://doi.org/10.1101/2021.01.18.426733
https://doi.org/10.1016/j.cmet.2019.06.018
https://doi.org/10.1016/j.psyneuen.2017.12.007
https://doi.org/10.1016/j.psyneuen.2017.12.007
https://doi.org/10.1186/s13059-015-0828-5
https://doi.org/10.1186/s13059-015-0828-5
https://doi.org/10.1038/s41598-020-62262-x
https://doi.org/10.1038/s41598-020-62262-x
https://doi.org/10.1016/j.bpa.2016.04.002
https://doi.org/10.1016/j.bpa.2016.04.002
https://doi.org/10.1038/s43587-022-00248-2
https://doi.org/10.1038/s43587-022-00248-2
https://doi.org/10.1186/1471-2105-13-86
https://doi.org/10.1186/1471-2105-13-86
https://doi.org/10.1016/j.suc.2007.12.005
https://doi.org/10.1016/j.suc.2007.12.005
https://doi.org/10.1016/j.arr.2020.101093
https://doi.org/10.1016/j.arr.2020.101093
https://doi.org/10.4161/epi.20388
https://doi.org/10.1038/mp.2013.62
https://doi.org/10.1038/mp.2013.62
https://doi.org/10.1080/15592294.2017.1411444


ll
Article
DNA methylation trajectories during pregnancy. Epigenet. Insights 12,

2516865719867090. https://doi.org/10.1177/2516865719867090.

36. Smew, A.I., Hedman, A.M., Chiesa, F., Ullemar, V., Andolf, E., Pershagen,

G., and Almqvist, C. (2018). Limited association betweenmarkers of stress

during pregnancy and fetal growth in ‘Born into Life’, a new prospective

birth cohort. Acta Paediatr. 107, 1003–1010. https://doi.org/10.1111/

apa.14246.

37. Mavrikaki,M., Lee, J.D., Solomon, I.H., andSlack, F.J. (2022). SevereCOVID-

19 is associated with molecular signatures of aging in the human brain. Nat.

Aging 2, 1130–1137. https://doi.org/10.1038/s43587-022-00321-w.

38. Santesmasses, D., Castro, J.P., Zenin, A.A., Shindyapina, A.V.,

Gerashchenko, M.V., Zhang, B., Kerepesi, C., Yim, S.H., Fedichev, P.O.,

and Gladyshev, V.N. (2020). COVID-19 is an emergent disease of aging.

Aging Cell 19, e13230. https://doi.org/10.1111/acel.13230.

39. CDC (2020). Cases, data, and surveillance. Cent. Dis. control prev. https://

www.cdc.gov/coronavirus/2019-ncov/covid-data/investigations-discovery/

hospitalization-death-by-age.html.

40. Ying, K., Zhai, R., Pyrkov, T.V., Shindyapina, A.V., Mariotti, M., Fedichev,

P.O., Shen, X., and Gladyshev, V.N. (2021). Genetic and phenotypic anal-

ysis of the causal relationship between aging and COVID-19. Commun.

Med. (Lond) 1, 35. https://doi.org/10.1038/s43856-021-00033-z.

41. Kuo, C.L., Pilling, L.C., Atkins, J.L., Masoli, J.A.H., Delgado, J., Tignanelli,

C., Kuchel, G.A., Melzer, D., Beckman, K.B., and Levine, M.E. (2021).

Biological aging predicts vulnerability to COVID-19 severity in UK

Biobank participants. J. Gerontol. A Biol. Sci. Med. Sci. 76, e133–e141.

https://doi.org/10.1093/gerona/glab060.

42. Franzen, J., N€uchtern, S., Tharmapalan, V., Vieri, M., Nikoli�c, M., Han, Y.,

Balfanz, P., Marx, N., Dreher, M., Br€ummendorf, T.H., et al. (2020).

Epigenetic clocks are not accelerated in COVID-19 patients. IJMS 22,

9306. https://doi.org/10.3390/ijms22179306.

43. Pang, A.P., Higgins-Chen, A.T., Comite, F., Raica, I., Arboleda, C., Mendez,

T., Schotsaert, M., Dwaraka, V., Smith, R., Levine, M.E., et al. (2021).

Longitudinal study of DNA methylation and epigenetic clocks prior to and

following test-confirmed COVID-19 and mRNA vaccination (infectious dis-

eases (except HIV/AIDS)). https://doi.org/10.1101/2021.12.01.21266670.

44. Cao, X., Li, W., Wang, T., Ran, D., Davalos, V., Planas-Serra, L., Pujol, A.,

Esteller, M., Wang, X., and Yu, H. (2022). Accelerated biological aging in

COVID-19 patients. Nat. Commun. 13, 2135. https://doi.org/10.1038/

s41467-022-29801-8.

45. Peckham, H., de Gruijter, N.M., Raine, C., Radziszewska, A., Ciurtin, C.,

Wedderburn, L.R., Rosser, E.C., Webb, K., and Deakin, C.T. (2020).

Male sex identified by global COVID-19 meta-analysis as a risk factor

for death and ITU admission. Nat. Commun. 11, 6317. https://doi.org/

10.1038/s41467-020-19741-6.

46. Sanders, J.M., Monogue, M.L., Jodlowski, T.Z., and Cutrell, J.B. (2020).

Pharmacologic treatments for coronavirus disease 2019 (COVID-19): a re-

view. JAMA 323, 1824–1836. https://doi.org/10.1001/jama.2020.6019.

47. Chen, R., Xia, L., Tu, K., Duan, M., Kukurba, K., Li-Pook-Than, J., Xie, D.,

and Snyder, M. (2018). Longitudinal personal DNAmethylome dynamics in

a human with a chronic condition. Nat. Med. 24, 1930–1939. https://doi.

org/10.1038/s41591-018-0237-x.

48. Lu, Y., Brommer, B., Tian, X., Krishnan, A., Meer, M., Wang, C., Vera, D.L.,

Zeng, Q., Yu, D., Bonkowski, M.S., et al. (2020). Reprogramming to

recover youthful epigenetic information and restore vision. Nature 588,

124–129. https://doi.org/10.1038/s41586-020-2975-4.

49. Pyrkov, T.V., Avchaciov, K., Tarkhov, A.E., Menshikov, L.I., Gudkov, A.V.,

and Fedichev, P.O. (2021). Longitudinal analysis of blood markers reveals

progressive loss of resilience and predicts human lifespan limit. Nat.

Commun. 12, 2765. https://doi.org/10.1038/s41467-021-23014-1.

50. Avchaciov, K., Antoch, M.P., Andrianova, E.L., Tarkhov, A.E., Menshikov,

L.I., Burmistrova, O., Gudkov, A.V., and Fedichev, P.O. (2022).

Unsupervised learning of aging principles from longitudinal data. Nat.

Commun. 13, 6529. https://doi.org/10.1038/s41467-022-34051-9.
51. Komaki, S., Ohmomo, H., Hachiya, T., Sutoh, Y., Ono, K., Furukawa, R.,

Umekage, S., Otsuka-Yamasaki, Y., Minabe, S., Takashima, A., et al.

(2022). Evaluation of short-term epigenetic age fluctuation. Clin.

Epigenet. 14, 76. https://doi.org/10.1186/s13148-022-01293-9.

52. Rebo, J., Mehdipour, M., Gathwala, R., Causey, K., Liu, Y., Conboy, M.J.,

and Conboy, I.M. (2016). A single heterochronic blood exchange reveals

rapid inhibition of multiple tissues by old blood. Nat. Commun. 7, 13363.

https://doi.org/10.1038/ncomms13363.

53. Gonzalez-Armenta, J.L., Li, N., Lee, R.L., Lu, B., and Molina, A.J.A. (2021).

Heterochronic parabiosis: old blood induces changes in mitochondrial

structure and function of young mice. J. Gerontol. A Biol. Sci. Med. Sci.

76, 434–439. https://doi.org/10.1093/gerona/glaa299.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Biological samples

DNA isolated from blood of COVID-19 patients Brigham and Women’s

Hospital Crimson Core

N/A

Critical commercial assays

Infinium MethylationEPIC v2.0 Kit Illumina 20087709

DNeasy Blood & Tissue Kit Qiagen 69504

QIAamp DNA Blood Mini Kit Qiagen 51104

RNAqueous Total RNA Isolation Kit Invitrogen AM1912

Deposited data

Sadahiro et al.26 DNAm data GEO GSE142536

Guintivano et al.33 DNAm data GEO GSE44132

Emory Pregnancy Cohort DNAm data GEO GSE107459

Born into Life Cohort DNAm data Prof. C. Almqvist N/A

White et al.32 DNAm data GEO GSE37722

Parabiosis data: HorvathMammalMethyl40

array DNAm, RRBS DNAm, and RNA-seq data

This study GSE224447

Longitudinal mouse pregnancy DNAm data This study GSE224352

Longitudinal DNAm data for patients with

severe COVID-19

This study GSE226206

Experimental models: Organisms/strains

C57Bl/6J mice Jackson Laboratory 000664

Software and algorithms

Prism Graphpad v9

R r-project.org v4.1.1

RStudio Rstudio.com V1.4.1717

minfi package Bioconductor https://doi.org/10.18129/B9.bioc.minfi

SeSAMe package Bioconductor https://doi.org/10.18129/B9.bioc.sesame

DunedinPACE package Github https://github.com/danbelsky/DunedinPACE

PC-Clocks package Github https://github.com/MorganLevineLab/PC-Clocks

Data underlying all plots This study Data S1
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Vadim

Gladyshev (vgladyshev@rics.bwh.harvard.edu).

Materials availability
Unique materials will be made available upon reasonable request to the lead contact.

Data and code availability
d All data originally generated in this study will be made available in GEO upon publication (see key resources table for accession

numbers). Source data are provided in Data S1: Data underlying all plots.

d This paper does not report original code.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mouse experiments
All mouse experiments were approved by the Mass General Brigham IACUC or the Duke University IACUC. C57Bl/6 mice were ob-

tained from Jackson Laboratories and acclimated to our animal facility for at least 48 h before being subjected to any experimental

manipulation. Aged C57Bl/6 mice for parabiosis experiments were obtained from the NIA aged rodent colony. Mice were maintained

in a barrier facility in sterilized, ventilated cages and fed standard laboratory chow (LabDiet 5053) and reverse osmosis drinking water

ad libitum andmaintained on a 12h:12h light:dark cycle. Mice were generally housed socially (5 mice/cage) except for the pregnancy

studies wherein male mice were housed individually after mating. Mice were humanely euthanized at the conclusion of each exper-

iment by CO2 exposure followed by cervical dislocation.

Mouse parabiosis experiments
Parabiosis was carried out as previously described.20 Female C57Bl/6 mice were pre-screened to minimize body size differences,

and were randomly assigned to parabiosis pairs. Isochronic pairs consisted of two 3-month-old mice and heterochronic pairs con-

sisted of one 3-month-old mouse and one 20-month-old mouse. Pairs were surgically attached and maintained for 3 months.

Following 3 months of parabiosis, a subset of mice were euthanized for analysis and another subset were surgically separated. Fas-

cia and skin were sutured closed following separation, and mice were allowed to recover for 2 months, after which they were for

euthanized for analysis.

Mouse pregnancy experiments
C57Bl/6 mice (11 weeks old) were obtained from Jackson Laboratories. Three days before mating, male mice were separated into

individual cages and soiled bedding frommale cages was added to female cages to induce estrus.60 1:1 mating pairs were set up in

the evening and left overnight. Females were removed from male cages the following morning and inspected for copulatory plugs.

Pregnant females were identified by daily tracking of body weight. Blood was collected in EDTA tubes by submandibular vein punc-

ture every two weeks to create a series of four samples per mouse: (1) 10 days before mating; (2) 4 days after mating; (3) 18 days after

mating; and (4) 32 days after mating, generally corresponding to�2 weeks postpartum. Pups were humanely euthanized shortly after

birth allowing mothers to recover from pregnancy without needing to nurse. Blood was snap-frozen in liquid nitrogen immediately

after collection and stored at –80�C until needed.

COVID-19 study
This study was approved by the Mass General Brigham IRB (protocol number 2020P004121). We selected a cohort of patients with

RT-PCR-confirmed COVID-19 who were admitted to the intensive care units of Brigham and Women’s Hospital (Boston, MA, USA).

Clinical blood samples from these subjects were obtained through the Crimson Core facility of Mass General Brigham. Buffy coats

from these blood samples were used as a source of DNA for methylation profiling as described elsewhere. Clinical and demographic

data were collected by review of electronic medical records. Descriptive statistics are provided in Table 1.

METHOD DETAILS

Isolation of nucleic acids
DNAwas isolated from human buffy coat samples at the Crimson Core facility (Mass General Brigham) using the QIAamp DNA Blood

Mini Kit (Qiagen 51104) following the manufacturer’s protocol. Eluted DNA was concentrated using a speedvac. DNA was isolated

from mouse tissues using the DNeasy Blood and Tissue Kit (Qiagen) following the manufacturer’s protocol. RNA was isolated from

mouse tissues using the Ambion RNAqueous Total RNA Isolation Kit (Invitrogen). Generally, 50–100 ml of blood or �25 mg of solid

tissue was used as starting material. Concentration of DNA/RNA samples was determined using the Qubit dsDNA BR or RNA HS

assay kit (Invitrogen). Isolated DNA was stored at –20�C and isolated RNA was stored at –80�C.

DNA methylation profiling
Methylation data was generated through the Epigenetic Clock Development Foundation. Human DNA samples for the COVID study

were subjected to the Infinium MethylationEPIC array (Illumina) at AKESOgen Inc., and mouse DNA samples were subjected to the

HorvathMammalMethylChip40 at the UCLA Neuroscience Genomic Core (UNGC). Samples were randomized to avoid introduction

of batch/chip effects, but longitudinal samples from a single patient/mouse were run on the same chip. All sample preparation/pro-

cessing was carried out according to the Illumina kit protocols.

Other sources of human methylation data
Illumina HumanMethylation450 BeadChip data for surgical patients fromSadahiro et al.26 were downloaded fromGEO (GSE142536).

Illumina HumanMethylation450 BeadChip data for the Emory University African American Microbiome in Pregnancy Cohort are pub-

licly available via GEO (GSE107459). In our study, only paired samples were analyzed; participants with only a single blood sample

were excluded. Illumina HumanMethylation450 BeadChip data from Guintivano et al.33 are publicly available via GEO (GSE44132).

Chronological age data for this cohort were kindly provided by Prof. Zachary Kaminsky (The Royal, Canada). Illumina
e2 Cell Metabolism 35, 807–820.e1–e5, May 2, 2023
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MethylationEPIC BeadChip data from the Born into Life cohort35,36 were kindly provided by Prof. Catarina Almqvist (Karolinska In-

stitutet, Sweden). Detailed information for these datasets can be found in Table S2.

Gene expression profiling
Total RNA isolated as described above was checked for quality using an Agilent 2100 Bioanalyzer. Samples that passed QC were

paired-end sequenced on an Illumina NovaSeq 6000 S4 with 100 bp read length.

Metabolite profiling
Metabolite profiling was carried out using a modified version of a reported procedure.61 Portions of liver tissue from parabiosis an-

imals were weighed, mixed with a volume of water equal to 4x the weight of the tissue, and homogenized for 4 min at 20Hz with

2x3mm tungsten beads in a Tissuelyser II (Qiagen). Samples were aliquoted in preparation for four orthogonal LC/MS profiling ex-

periments: 10 ul portions each for hydrophobic interaction liquid chromatography (HILIC)-positive ionization mode and C8-positive

ionization mode, and 30 ul portions for HILIC-negative ionization mode and C8-negative ionization mode. Further processing steps

differed based on the profiling mode.

1. HILIC-pos profiling was carried out on a Shimadzu Nexera X2 U-HPLC (Shimadzu Corp.; Marlborough, MA) coupled to a Q

Exactive hybrid quadrupole orbitrapmass spectrometer (Thermo Fisher Scientific; Waltham, MA). Protein was precipitated

from samples by addition of nine volumes of 74.9:24.9:0.2 v/v/v acetonitrile/methanol/formic acid containing internal stan-

dards (valine-d8, Sigma-Aldrich; St. Louis, MO; and phenylalanine-d8, Cambridge Isotope Laboratories; Andover, MA).

Precipitated material was cleared by centrifugation and the supernatant was injected directly onto a 1503 2 mm 3 mmAtlantis

HILIC column (Waters; Milford, MA). Elution was as follows: (1) 5%mobile phase A (10 mM ammonium formate and 0.1% for-

mic acid in water), 0.5 min, 250 mL/min; (2) linear gradient to 40%mobile phase B (acetonitrile with 0.1% formic acid), 10 min,

250 mL/min. MS analysis was with electrospray ionization (ESI) in positive ion mode with the following parameters: full scan

analysis over 70–800 m/z at 70,000 resolution and 3 Hz data acquisition rate; sheath gas 40; sweep gas 2; spray voltage

3.5 kV; capillary temperature 350�C; S-lens RF 40; heater temperature 300�C; microscans 1; automatic gain control target

1e6; and maximum ion time 250 ms.

2. HILIC-neg profiling was carried out on an AQUITY UPLC system (Waters; Milford, MA coupled to a 5500 QTRAP mass spec-

trometer (SCIEX; Framingham, MA). Protein was precipitated from samples by addition of four volumes of 80%methanol con-

taining internal standards (inosine-15N4, thymine-d4 and glycocholate-d4; Cambridge Isotope Laboratories; Andover, MA).

Precipitated material was cleared by centrifugation and the supernatant was injected directly onto a 150 3 2.0 mm Luna

NH2 column (Phenomenex; Torrance, CA). Elution was as follows: (1) 10% mobile phase A (20 mM ammonium acetate and

20 mM ammonium hydroxide in water) and 90%mobile phase B (10 mM ammonium hydroxide in 75:25 v/v acetonitrile/meth-

anol), 400 mL/min; (2) linear gradient to 100%mobile phase A, 10 min, 400 mL/min. MS analysis was with ESI and selective mul-

tiple reaction monitoring scans in the negative ion mode61 with the following parameters: ion spray voltage �4.5 kV; source

temperature 500�C.
3. C8-pos profiling was carried out on a Shimadzu Nexera X2 U-HPLC (Shimadzu Corp.; Marlborough, MA) coupled to a Exactive

Plus orbitrap mass spectrometer (Thermo FisherScientific; Waltham, MA). Lipids were extracted from samples by addition of

190 mL isopropanol containing 1,2-didodecanoyl-sn-glycero-3-phosphocholine (Avanti Polar Lipids; Alabaster, AL). Insoluble

material was cleared by centrifugation and the supernatant was injected directly onto a 1003 2.1 mm, 1.7 mm ACQUITY BEH

C8 column (Waters; Milford, MA). Elution was as follows: (1) 80% mobile phase A (95:5:0.1 vol/vol/vol 10mM ammonium ac-

etate/methanol/formic acid), 1min; (2) linear gradient to 80%mobile- phase B (99.9:0.1 vol/vol methanol/formic acid), 2min; (3)

linear gradient to 100%mobile phase B, 7 min; (4) 100%mobile-phase B, 3 min. MS analysis was with ESI in positive ion mode

with the following parameters: full scan analysisover 200–1000 m/z at 70,000 resolution and 3 Hz data acquisition rate; sheath

gas 50; in source CID 5 eV; sweep gas 5; spray voltage 3 kV; capillary temperature 300�C; S-lens RF 60; heater temperature

300�C; microscans 1; automatic gain control target 1e6; and maximum ion time 100 ms.

4. C8-neg profiling was carried out on a Shimadzu Nexera X2 U-HPLC (Shimadzu Corp.;Marlborough, MA) coupled to a Q Ex-

active hybrid quadrupole orbitrap mass spectrometer (Thermo Fisher Scientific; Waltham, MA). Free fatty acids and bile acids

were extracted from samples by addition of 90 mL methanol containing PGE2-d4 (Cayman Chemical Co.; Ann Arbor, MI).

Elution was as follows: (1) 60%mobile phase A (0.1% formic acid in water), 4 min, 400 mL/min; (2) linear gradient to 100%mo-

bile phase B (acetonitrile with 0.1% formic acid), 8 min. MS analysis was with ESI in negative ion mode with the following pa-

rameters: full scan MS acquisition over 200–550 m/z at 70,000 resolution; sheath gas 45; sweep gas 5; spray voltage�3.5 kV;

capillary temperature 320�C; S- lens RF 60; heater temperature 300�C; microscans 1; automatic gain control target 1e6; and

maximum ion time 250 ms.

Raw data was processed using TraceFinder (Thermo Fisher Scientific; Waltham, MA) and Progenesis QI (Nonlinear Dynamics;

Newcastle upon Tyne, UK) for Q Exactive (Plus) experiments or MultiQuant (SCIEX; Framingham, MA) for 5500 QTRAP experiments.

Metabolite identities were confirmed using authentic reference standards or reference samples. Insoluble material was cleared by

centrifugation and the supernatant was injected directly onto a 150 3 2 mm ACQUITY T3 column (Waters; Milford, MA).
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QUANTIFICATION AND STATISTICAL ANALYSIS

DNAm clock analysis
For mammalian microarray analysis, raw methylation data were first normalized using the SeSAMe R package and beta values were

calculated. DNAm age biomarkers were calculated as previously described.9 For publicly available human datasets, if raw idat

methylation files were available, they were processed using the minfi R package.62 Data were first preprocessed using noob normal-

ization and then beta values were calculated using the getBeta function. For datasets where only raw or normalizedmethylation data/

calculated beta values were the only data available, these data were used directly. Human DNAm age biomarkers were calculated

using the online Hovath DNA Methylation Age Calculator, which calculates Horvath DNAm age,6 Hannum DNAm age,7 Skin & Blood

DNAm age,8 DNAmPhenoAge,14 and DNAmGrimAge,15 among other parameters. DunedinPACE17 was calculated with the

DunedinPACE R package.63 RRBS-based epigenetic clocks were applied as previously described.10,11,20 PC clocks were applied

using publicly available code.28

DNAm age analysis
All DNAm age biomarkers were adjusted by chronological age to yield an age acceleration parameter. For human studies, this was

carried out by calculating residuals from regressing DNAm age on chronological age. Note that this correction is neither necessary

nor relevant for DunedinPACE. For mouse experiments, linear regressions are skewed by the strong effects of the experimental in-

terventions applied (e.g. parabiosis). Thus, for mouse experiments, we calculated age acceleration by subtracting chronological age

from DNAm age.

In one case (the White et al. human pregnancy dataset), chronological ages were not available. To account for the passage of time

in this longitudinal dataset, we corrected the DNAm age predictions by the average amount of time between each sample collection

point, based on the methods of the original publication32 and the assumption that most women do not learn they are pregnant for

6 weeks on average. This corresponded to the following time corrections: 0.26, 0.635, and 0.75 years, respectively, for time points

2, 3, and 4.

Gene expression analysis
For RNAseq data, we filtered out genes with low number of reads, keeping only the genes with at least 10 reads in at least 50% of the

samples, which resulted in 12,374 detected genes according to Entrez annotation. Filtered data was then passed to RLE normaliza-

tion.64 Differential expression of genes in response to heterochronic parabiosis compared to isochronic parabiosis was analyzed us-

ing edgeR65 separately for merged and detached models. Obtained p-values were adjusted for multiple comparison with Benjamini-

Hochberg method.66

Association with gene expression signatures
Association of gene expression log-fold changes induced by heterochronic parabiosis with previously established transcriptomic

signatures of aging was examined as described in Tyshkovskiy et al.23 separately for merged and detached groups. Liver-specific

andmulti-tissuemouse signatures obtained via ameta-analysis of age-related gene expression changes frommultiple datasets were

utilized for this analysis.

First, for every signature we specified 250 genes with the lowest p-values and divided them into up- and downregulated genes.

These lists were subsequently considered as gene sets. Then, we ranked genes differentially expressed in response to heterochronic

parabiosis based on their p-values, calculated as described above. Afterwards, we utilized gene set enrichment analysis (GSEA)67 to

calculate normalized enrichment scores (NES) separately for up- and downregulated lists of gene sets as described in Tyshkovskiy

et al.,23 and calculated the final NES as a mean of the two. To calculate statistical significance of obtained NES, we performed per-

mutation testing where we randomly assigned genes to the lists of gene sets, maintaining their size. To get the p-value of the asso-

ciation between parabiosis and a certain signature, we used 5,000 permutations and calculated the frequency of random final NES

that are larger in magnitude than the observed final NES. To adjust for multiple testing, we performed a Benjamini-Hochberg correc-

tion. Final NES for association of response to heterochronic parabiosis with aging signatures were used to generate barplots.

Functional enrichment analysis
For the identification of enriched functions distinguishing isochronic and heterochronic mice, we performed functional GSEA67 on a

pre-ranked list of genes based on log10(p-value) corrected by the sign of regulation, calculated as:

�ðpvÞ3 sgnðlfcÞ;
where pv and lfc are p-value and logFC of a certain gene, respectively, obtained from edgeR output, and sgn is the signum function

(equal to 1, -1 and 0 if value is positive, negative or equal to 0, respectively). REACTOME, KEGG and HALLMARK ontologies from the

Molecular Signature Database (MSigDB) were used as gene sets for GSEA. The GSEA algorithm was performed separately for

merged and detached models via the fgsea package in R with 5000 permutations. A q-value cutoff of 0.1 was used to select statis-

tically significant functions.

Similar analysis was performed for gene expression signatures of aging. Pairwise Spearman correlation was calculated for individ-

ual signatures of heterochronic parabiosis and aging based on estimated NES. A heatmap colored by NES was built for manually
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chosen statistically significant functions (adjusted p-value < 0.1). Complete list of functions enriched by at least one signature of het-

erochronic parabiosis is included in Table S1.

Metabolomics analysis
Metabolomics data was analyzed using MetaboAnalyst.68 Normalized data were mean-centered and auto-scaled. Age-related me-

tabolites were defined as those which significantly changed (FDR threshold 0.1) between old and young isochronic parabionts. Both

attached and detached animals were compared, and the intersecting set of metabolites was used for further analysis. To evaluate the

effect of heterochronic parabiosis on metabolite levels, metabolites showing less than 10% fold change were first filtered, then the

fold changes of age-relatedmetabolites was compared between the indicated parabiosis condition (Figures 2C and 2D) and between

old and young isochronic animals. Kendall correlation was used to calculate correlation coefficients and p values.

Differential methylation analysis
Differential methylation modeling was carried out using SeSAMe.69 The following comparisons were made for models of stress:

Emory pregnancy, time point 2 vs. time point 1; Surgery, time point 2 vs. time point 1; Guintivano et al. pregnancy, trimester 3 vs.

trimester 1. The following comparisons were made for models of recovery: COVID infection, female patients: time point 4 vs. time

point 1; Surgery, time point 3 vs. time point 2; White et al.pregnancy, time point 4 vs. time point 3. CpGswere considered significantly

differentially methylated if adjusted p value was less than 0.05. CpGs with increasing methylation levels were separated from those

with decreasing methylation levels, and intersections between the various models were used to construct the Venn diagrams in

Figure S6.

Statistics
For longitudinal datasets, repeatedmeasures ANOVA ormixed effects models were first used to test for significant variance between

time points. If these tests revealed a significant effect, paired t tests corrected by controlling the false discovery rate using the

Benjamini-Hochberg method were carried out between groups. Exact p values are shown within all figures. For non-longitudinal

datasets, a similar procedure was used except that traditional ANOVAs and unpaired t tests were used. All t tests were two-tailed.

Sample sizes are indicated in figure legends.
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