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ABSTRACT

PURPOSE Recent evidence has shown that higher tumor mutational burden strongly
correlates with an increased risk of immune-related adverse events (irAEs).
By using an integrated multiomics approach, we further studied the asso-
ciation between relevant tumor immune microenvironment (TIME) features
and irAEs.

METHODS Leveraging the US Food and Drug Administration Adverse Event Reporting
System, we extracted cases of suspected irAEs to calculate the reporting odds
ratios (RORs) of irAEs for cancers treated with immune checkpoint inhibitors
(ICIs). TIME features for 32 cancer types were calculated on the basis of the
cancer genomic atlas cohorts and indirectly correlated with each cancer’s ROR
for irAEs. A separate ICI-treated cohort of non–small-cell lung cancer (NSCLC)
was used to evaluate the correlation between tissue-based immune markers
(CD81, PD-1/L11, FOXP31, tumor-infiltrating lymphocytes [TILs]) and irAE
occurrence.

RESULTS The analysis of 32 cancers and 33 TIME features demonstrated a significant
association between irAE RORs and the median number of base insertions and
deletions (INDEL), neoantigens (r 5 0.72), single-nucleotide variant neo-
antigens (r 5 0.67), and CD81 T-cell fraction (r 5 0.51). A bivariate model using
the median number of INDEL neoantigens and CD8 T-cell fraction had the
highest accuracy in predicting RORs (adjusted r2 5 0.52, P 5 .002). Immuno-
profile assessment of 156 patientswithNSCLC revealed a strong trend for higher
baseline median CD81 T cells within patients’ tumors who experienced any
grade irAEs. Using machine learning, an expanded ICI-treated NSCLC cohort
(n 5 378) further showed a treatment duration–independent association of an
increased proportion of high TIL (>median) in patients with irAEs (59.7% v
44%, P 5 .005). This was confirmed by using the Fine-Gray competing risk
approach, demonstrating higher baseline TIL density (>median) associated
with a higher cumulative incidence of irAEs (P 5 .028).

CONCLUSION Our findings highlight a potential role for TIME features, specifically INDEL
neoantigens and baseline-immune infiltration, in enabling optimal irAE risk
stratification of patients.

INTRODUCTION

The introduction of immune checkpoint inhibitors (ICIs)
has revolutionized the treatment paradigm in oncology.
Across numerous cancer types, ICI therapies have moved
from the metastatic to the neoadjuvant/adjuvant setting.1

ICIs, however, are often associated with a loss of tolerance
to healthy self-tissues, manifesting as immune-related

adverse events (irAEs). The tissue specificity, timing, and
severity of irAEs vary highly and depend on the type of
checkpoint inhibition and the underlying tumor type.2

Notably, higher-grade irAEs can also lead to consequences
of therapy interruptions or permanent discontinuations.
Furthermore, prolonged use of immunosuppression, es-
pecially steroids, to manage irAEs can deleteriously affect
the quality of life of some patients, especially older adults.
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A growing body of evidence from our group and others has
demonstrated that the longitudinal development of irAEs
during ICI therapies is often associated with improved
outcomes with ICIs.3-27 Ongoing efforts have centered
around an integrated approach to identifying genomic,
transcriptomic, and microbiome-associated predictors of
irAEs.28,29 More recently, deconvoluting the role of somatic
and germline associations with irAEs is an area of emerging
interest to understand the role of baseline genotypic and
phenotypic features in augmenting ICI-associated irAEs
among at-risk individuals. Some recent body of work has
suggested an association between interleukin-7 germline
variants or certain variations of human leukocyte antigen
(HLA) B variants, such as HLA-B*35:01 and irAE risk.30,31

Among established tumor immune microenvironment (TIME)
features, tumor mutational burden (TMB) has demonstrated
one of the strongest correlations with irAE risk.32 Recently,
we and others have shown a significant positive correlation
between the reporting odds ratios (RORs) of irAEs during ICI
therapy and the corresponding TMB across 19 cancer types.33,34

Our analysis suggested that patients with cancers harboring
a high median TMB, such as melanoma and small-cell and
non–small-cell lung cancers (NSCLCs), are more likely to
experience irAEs secondary to ICIs.Moreover, in an ICI-treated
small-cell lung cancer cohort,wepreviously demonstrated that
patients with irAEs had a higher median TMB than patients
with no reported irAEs.35

In this article, we extend these observations by analyzing the
indirect association between the RORs of irAEs from the US
Food and Drug Administration Adverse Events Reporting
System (FAERS) and 33 selected TIME features across 32
cancer types on the basis of the cancer genome atlas (TCGA)

using pre-existing analysis from the study by Thorsson
et al.36 Furthermore, in an independent cohort of ICI-treated
patientswithNSCLCwho developed irAEs, usingmultiplexed
immunofluorescence (mIF) and a machine learning ap-
proach to evaluate tumor-infiltrating lymphocytes (TILs),
we evaluated baseline tumor immune phenotype composi-
tion and its association with irAEs.

METHODS

Processing FAERS Data

We downloaded the FAERS data from July 1, 2014, to De-
cember 31, 2022.37 We excluded earlier data as primary
suspect drug (PS) data were available only from the third
quarter of 2014. We extracted the drugs used (including the
PS medication), the indications, and the reactions for each
of the 10,711,646 specific patient cases. We then performed
a text search (1) in the reaction field for the terms of 105 irAEs
defined by Bomze et al34 (Data Supplement, Table S1), (2) in
the indication field for cancer terms matched to 33 cancer
types defined by the TCGA study and analyzed in the study by
Thorsson et al36 (Data Supplement, Table S2), and (3) in
the PS drug field for the names of drugs used in ICI therapy
(ipilimumab, tremelimumab, nivolumab, pembrolizumab,
cemiplimab, pidilizumab, spartalizumab, tislelizumab, tor-
ipalimab, avelumab, durvalumab, and atezolizumab). Patients
were included if they had been treated with anti–PD-1/anti–
PD-L1 alone or with additional ICIs such as anti–cytotoxic
T-cell lymphocyte antigen-4 (anti–CTLA-4). We calculated
the RORs for each cancer type using a method described in
Table 1. We found no cases with uterine carcinosarcoma in-
dicationwhen ICI drugswere applied. Thus,we considered only
32 cancer types in the further data analysis.

CONTEXT

Key Objective
The occurrence of immune-related adverse events (irAEs), despite being an indirect surrogate for immune checkpoint
inhibitor (ICI) efficacy, frequently leads to treatment interruption and worsening patients’ quality of life. In this study, we
used a multiomics approach and studied the association between tumor immune microenvironment features and irAEs
across 32 cancer types using a pharmacovigilance data set and an independent ICI-treated non–small-cell lung cancer
(NSCLC) cohort.

Knowledge Generated
Our multiomics analyses revealed an important role for insertions and deletions neoantigens and CD81 T-cell fraction in
predicting the likelihood of irAE occurrence with ICIs. Furthermore, higher baseline intratumoral presence of tumor-
infiltrating lymphocytes was associated with higher irAE incidence in ICI-treated patients with NSCLC, which was inde-
pendent of the duration of ICI therapy.

Relevance
Identified irAE biomarkers can provide valuable insights that could further inform patients’ risk stratification for optimal ICI
administration while balancing maximal efficacy and limiting toxicity.
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Processing of Data From ClinicalTrials.gov

Data from ClinicalTrials.gov were downloaded on November
28, 2022, totaling 434,409 clinical trial records. Of the
downloaded clinical trial records, 111 records were identified
as having (1) completed trials with results posted, (2) where
patients were administered anti–CTLA-4 (ipilimumab,
tremelimumab), anti–PD-1 (nivolumab or pembrolizumab)
or combination anti–PD-1 with anti–CTLA-4, and (3) trials
enrolled participants with melanoma or lung cancer. We
further filtered the records and identified 18,512 participants
who were administered monotherapy or combination ICI
therapy (Data Supplement, Table S9). On the basis of these
data, we extracted the incidence of serious colitis and pneu-
monitis. Serious events were defined as death, a life-
threatening adverse event, inpatient hospitalization or pro-
longation of existing hospitalization, a persistent or significant
incapacity or substantial disruption of the ability to conduct
normal functions, or a congenital anomaly/birth defect.

TCGA Tumor Immune Microenvironment Features

We calculated the median values for the TIME features of
32 cancer types using processed TCGA data from the study
by Thorsson et al.36 These data from the study by Thorsson
et al comprised an extensive immunogenomic analysis of
more than 11,000 tumors across 33 cancer types by using
data compiled from the TCGA. They used immunogenomics
techniques, such as assessment of the total lymphocytic
infiltrate, immune cell fractions from deconvolution
analysis of mRNA-seq data, immune gene expression
signatures, neoantigen prediction, T-cell repertoire (TCR)
and B-cell repertoire, and somatic DNA alterations. Im-
mune cellular fraction estimates were determined by
CIBERSORT (cell type identification by estimating relative
subsets of RNA transcripts) applied to the TCGA RNASeq
data. Potential neoantigenic peptides were identified using
NetMHCpan v3.0 on the basis of HLA types derived from
RNA-seq using OptiType. Somatic nonsynonymous coding
single-nucleotide variants (SNVs) and somatic insertion
deletion variants (INDELs) were extracted from the MC3
variant file (mc3.v0.2.8.CONTROLLED.maf) using different
filters. A more detailed description of the calculation of
TIME features is in the study by Thorsson et al.39 We ex-
amined 33 TIME features (Data Supplement, Table S8). We

calculated the median values for the 33 selected TIME
features for 32 cancer types.

Correlation Analysis of the irAERORs andTIMEFeatures

After processing the FAERS database and the TCGA TIME
data set in the study by Thorsson et al, we had irAE ROR
values for 32 cancer types and TIME feature values for the
same cancer types. For each TIME feature, we performed
a separate correlation analysis. We considered cancer
types only for which there were at least 100 cases of
FAERS and at least 100 cases for the given TIME feature in
the data set in the study by Thorsson et al. This restriction
reduced the number of cancer types we examined in a specific
correlation analysis. For example Figures 1B and 1E do not
show melanoma (skin cutaneous melanoma [SKCM]) as there
are only 83 cases for the TIME feature “INDEL Neoantigens.”

Statistical Analysis

Correlations were evaluated with Pearson correlation coef-
ficient (r) and the corresponding P values using the stats
Pearson function of the Python package SciPy (Enthought,
Austin, TX; stats module). P values below .05 were inter-
preted as significant. We used a two-sided P value in the
study. The Benjamini-Hochberg procedure was applied for
multiple hypothesis testing to control the false discovery
rate (FDR; stats.multitest.function in the Python package
stats models). We calculated FDR-corrected P values sepa-
rately for the “all irAE” (Data Supplement, Table S4) and the
“single irAE” analysis (Data Supplement, Table S6). The linear
regression leave-one-out cross-validationmethodwas used to
construct a predictive model of ROR using TIME features with
significant correlations (P < .05; R package caret v6.0, R Core
Team,Vienna, Austria). Adjusted r-squared valueswere used to
demonstrate each model’s performance. The resulting uni-
variate, bivariate, and trivariate models were compared using
the log-likelihood ratio test (R package lmtest v0.9, lmtest
developing team, Innsbruck, Austria).

Multiplexed Immunofluorescence (ImmunoProfile)
From the DFCI Cohort

This approach has been previously described by the Dana-
Farber Cancer Institute (DFCI) group.39 mIF was performed
on a separate cohort of NSCLCs from DFCI to determine
the immunophenotype-associated subgroups by staining
5-micron formalin-fixed, paraffin-embedded whole tissue
sections with standard, primary antibodies sequentially and
pairing with a unique fluorochrome followed by staining with
nuclear counterstain/49,6-diamidino-2-phenylindole.40,41 All
samples were stained for PD-L1 (clone E1L3N), PD-1 (clone
EPR4877[2]), CD8 (clone4B11), andFOXP3 (cloneD608R). Each
sample had a single slide stained and scanned at 203 resolution
using a Vectra Polaris imaging platform. Regions of interest
(ROIs) were defined for each image, and only these regions
were used for quantitative image analysis. inForm Image
Analysis software (Perkin Elmer/Akoya, Marlborough, MA)

TABLE 1. A 2 3 2 Contingency Table for a Drug (X)-Adverse Event (Y)
Combination

Drug Usage Adverse Event (Y) Not an Adverse Event (Y)

Using drug X a b

Not using drug X c d

NOTE. ROR5 (a/b)/(c/d). The table is adapted from a previous study.58

In our case, the drug (X) is any ICI drug and the adverse event (Y) is any
irAE that occurs when a specific cancer type is the indication.
Abbreviations: ICI, immune checkpoint inhibitor; irAE, immune-related
adverse event; ROR, reporting odds ratio.
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FIG 1. Associations between ROR of irAEs and TIME parameters during anti–CTLA-4, anti–PD-1, anti–PD-L1, or combination therapy. (A) Pearson
correlation coefficients (r) of the irAE RORs of cancer types and median values for each examined TIME (continued on following page)
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was run within each ROI to phenotype and score cells on the
basis of biomarker expression. A custom script quantified the
number/percentage of positive cells for relevant biomarkers in
the intratumoral region, defined as the region of the slide
consisting of tumors beyond the tumor-stroma interface. Cell
count was calculated per ROI and averaged (unweighted)
across ROIs, reported as count per millimeter squared 6

standard error. Statistical significance of differential cell
type enrichment between groups for the presence or ab-
sence of irAEs was estimated using the Wilcoxon rank-
sum test.

Digital Pathology Assessment of TILs and Correlation
With irAEs

Hematoxylin and eosin (H&E) slides were digitalized using
Aperio ScanScope AT (0.49microns/pixel; Leica Biosystems,
Nußloch, Germany). Supervised machine learning algo-
rithms (QuPath v.0.1.3; Queen’s University, Belfast, Northern
Ireland) were sequentially used to build an automated TIL
scoringmodel in the following order: (1) color deconvolution
to estimate the stain vectors and to normalize the RGB
channels per slide asH&E intensity varied on different slides;
(2) watershed segmentation to identify cells on the basis of
size, shape, and optical density of nuclei in the hematoxylin
layer (calculating 33 features for each cell); (3) adding in-
tensity and smoothed object features, calculating Haralick
texture features and Gaussian-weighted averages per cell;
and (4) cell profiling; an object classifier was build up on the
basis of the random forest algorithm to identify TILs, tu-
mors, and stroma cells. TILs were defined as mononuclear
immune cells, including lymphocytes and plasma cells. We
then estimated the differences in baseline levels of TILs with
the presence or absence of irAEs using the Wilcoxon rank-
sum test. Logistic regression was used to adjust the asso-
ciation between TIL and irAE development by treatment
duration.

Ethical Approval and Ethical Standards

Institutional review board approval was not required be-
cause the FAERS is an unlinkable anonymized database
open to the public.

Clinicopathologic, genomic, and immunophenotypic data
were collected from patients with NSCLC who had consented
to institutional review board-approved correlative research

protocols DF/HCC 02-180, 11-104, 13-364, and/or 17-000 at
the Dana-Farber Cancer Institute (DFCI).

RESULTS

Patterns of irAEs From the FAERS Database and the
ClinicalTrials.gov Data Set

We retrieved postmarketing data of adverse events from the
US FAERS from July 1, 2014, to December 31, 2022, to assess
the risk of developing any grade irAE (Data Supplement,
Table S1) as determined by the RORs. Our search strategy
identified 58,961 patients with at least one of 32 selected
cancer types (Data Supplement, Table S2) who were treated
with ICI-based therapy. Of these patients, 15,114 had irAEs of
any grade (Fig 2A). Overall, the highest number of irAE cases
occurred with SKCM, kidney renal clear cell carcinoma, and
lung adenocarcinoma (LUAD) indications (Fig 2B). Serious
adverse events (SAE), defined as reactions leading to death,
disability, hospitalization, congenital anomalies, or an
outcome requiring intervention or life-threatening, were
reported in 41.2% of all 33 included cancers. The highest SAE
incidence among cancers with n ≥ 1,000 was found in breast
invasive carcinoma (50.6%), and the lowest (36.5%) was in
renal cell carcinoma (Data Supplement, Table S7). We also
reported on the incidence of specific irAEs that are either
commonly associated with ICI therapy (rash, pruritus) or
high morbidity/mortality (colitis, hepatitis, pneumonitis,
and myocarditis42). Patients with cutaneous melanoma had
the highest incidence of colitis (9.7%), whereas pneumonitis
occurred themost in both lung squamous cell carcinoma and
LUAD (4.5% and 4.4%; Data Supplement, Table S7, Fig 2C).
Across the three different ICI groups associated with an irAE,
themost frequently reported irAEs with anti–CTLA-4, anti–
PD-1/L1, and combinational regimens were colitis (59%),
rash (25%), and colitis (39%), respectively (Fig 2D).

To complement the FAERS database, we also extracted irAEs
from ClinicalTrials.gov. Overall, we identified 75 clinical
trials encompassing 18,512 participants with melanoma
and lung cancer who were administered with single-agent
anti–CTLA-4 (ipilimumab, tremelimumab) or anti–PD-1
(nivolumab, pembrolizumab) or the combination of anti–
PD-1 and anti–CTLA-4. In line with observations from the
FAERS database, the highest incidence of colitis (14.8%) was
found in participants with melanoma, whereas pneumonitis
was highest in participantswith lung cancer at 9.8% (Fig 2E).

FIG 1. (Continued). feature of the same cancer types. Significance is indicated by colors. We present a detailed image for (B) INDEL neoantigens
(median number of the INDEL count per case), (C) SNV neoantigens (median number of SNV neoantigen counts), and (D) CD81 T cells (median
fraction of CD81 T cells). The straight lines represent the linear fit. Circle size and color represent the total number of FAERS cases for each cancer
type and are shown at the top left of the figure. In the correlation analysis, we considered cancer types only for which there were at least 100 cases
of FAERS and at least 100 cases in the Immune Landscape of Cancer data set. (E) Scatter plot showing the association between the predicted ROR
(using the bivariatemodel of median INDEL neoantigens1 CD81 T-cell fraction) and the observed ROR. Pearson correlation coefficients (r) and the
corresponding P values are also shown. Anti–CTLA-4, anti–cytotoxic T-cell lymphocyte antigen-4; FAERS, Food and Drug Administration Adverse
Events Reporting System; FDR, false discovery rate; INDEL, insertions and deletions; irAE, immune-related adverse event; ROR, reporting odds
ratio; SNV, single-nucleotide variant; TIME, tumor immune microenvironment.
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Specifically, the incidence of colitis increased with the use of
anti–CTLA-4 versus anti–PD-1 (8.2% v 1.5%), whereas
combinational regimens increased the frequency of both
these irAEs.

TIME Features Associated With irAEs Using the FAERS
and TCGA Data Set

The comparator group (no ICI used and no restriction for
indications) comprised 871,582 adverse event reports from
10,711,646 patients from the FAERS database. The ROR was
calculated as the odds of reporting irAEs in patients treated
with anti–CTLA-4 (ipilimumab, tremelimumab), anti–PD-1
(nivolumab, pembrolizumab, cemiplimab, pidilizumab, spar-
talizumab, tislelizumab, toripalimab), anti–PD-L1 (avelumab,
durvalumab, atezolizumab), or combination therapy (anti–
PD-1 1 anti–CTLA-4) divided by the odds for all other drugs
in the database (Table 1).

To compare RORs with TIME features, we used an available
data set generated by the Immune Landscape of Cancer study

with processing RNA-seq data of the TCGA (Fig 2A). This
data set contains processed data of 11,080 tumors across 33
tumor types.36 We compared the ROR of irAEs from the
FAERS with 33 selected TIME features estimated in the TCGA
tumors and specifically found a significant positive corre-
lation between irAE ROR and three features associated with
antitumor immunity: the median number of insertions and
deletions (INDEL) neoantigens (r 5 0.72; P 5 .0011), the
median number of SNV neoantigens (r 5 0.67; P 5 .001), and
themedianCD81T-cell fraction (r50.51;P5 .019; Figs 1A-1D,
Data Supplement, Tables S3 and S4). These three features
were accordingly qualified to be included in building a more
accurate composite model for ROR prediction. Using the
leave-one-out cross-validation method, the bivariate model
on the basis of the median number of INDEL neoantigens
combined with the median CD81 T-cell fraction had the best
ROR predictive performance with the highest adjusted
r-squared value (r2 5 0.52, P 5 .002, Fig 1E) compared with
other models generated using median INDEL neoantigens,
SNV neoantigens, and CD81 T cells. The resulting bivariate
equation for ROR prediction was (ROR5 1.101 0.043median
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irAE
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(n = 1,042), n (%)
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a
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INDELneoantigens1 7.363 CD81T cell fraction) with 58%of
ROR variability explained by a change in the median number
of INDEL neoantigens and CD81 T-cell fraction. The log-
likelihood ratio test showed comparable predictive perfor-
mance between the bivariate model (INDEL neoantigens 1

CD81 T-cell fraction) and the univariate INDEL neoantigen
model (P 5 .16).

Next, we investigated the indirect association between our
specified irAEs and TIME features (Fig 3A, Data Supple-
ment, Tables S5 and S6). The strongest correlations were
found between ICI-related rash across tumor types and
baseline median INDEL neoantigens (r5 0.76, P 5 4.4E–04),
ICI-related myocarditis across tumor types and baseline
median CD81 T cells in the tumor (r 5 0.68, P 5 .00062), and
rash and CD81 T cells (r 5 0.65, P 5 .0013). Four of the top
seven correlations involved INDEL neoantigens or CD81

T cells (Figs 3B-3E). Both myocarditis and myositis were also
associatedwith INDELneoantigen load (r50.76,P54.37E–04;
and r 5 0.65, P 5 5.11E–03, respectively; Fig 1A).

Immunophenotypic Characterization of Patients With
NSCLC and irAEs

To further characterize the association between tumor-
infiltrating immune cells and irAEs, we next analyzed an
independent cohort of 156 patients with NSCLC treated with
ICI from the DFCI and evaluated baseline immune cell
subsets and their association with the presence or absence of
irAEs.We identified a strong trend for higher baselinemedian
CD81 T cells (P 5 .052; P adjusted for ICI duration 5 .067)
before ICI treatment among patients who experienced irAEs
comparedwithpatientswithout irAEs (Fig 4A). Thesefindings
corroborated with our indirect analysis from the FAERS
and TCGA, showing an association between baseline me-
dian CD81 T cells and irAEs across tumors. Baseline PD-L1
status (%) did not demonstrate a difference inpatientswith or
without irAEs (P 5 .90, Fig 4B). To further interrogate these
findings in a larger cohort, we used our previously validated
machine learning approach44 to examine potential baseline
differences in TILs in patients with 378 NSCLC versus those
without irAEs. We confirmed that patients who developed
irAEs had significantly higher baseline median TILs
compared with those without irAEs (P 5 .015, Fig 4C).
Importantly, after adjusting for treatment duration, we
confirmed a strong trend for the association between
baseline TIL and irAE development (P 5 .07), suggesting
that this correlation may potentially be independent of the
duration of ICI exposure. We also analyzed the proportion
of patients with versus without irAEs that had elevated TILs
(>median [>338 TILs/mm2]). We noted that patients with
irAEs had a significantly higher proportion of high TILs than
those without irAEs (59.7% v 44%, P 5 .005, Fig 3D). This
association remained significant after adjusting for treat-
ment duration (OR, 0.53; P 5 .009). We used a Fine-Gray
model to estimate the cumulative incidence of irAEs, ac-
counting for the competing risk of death. In the DFCI NSCLC
cohort, high baseline TIL density (>median) was found to be

associated with a higher cumulative incidence of irAEs (Fine-
Gray P value 5 .028, Fig 4E).

DISCUSSION

Our current pan-cancer analysis revealed a significant
correlation between the ROR of tumor-specific irAEs during
ICI therapy and the median number of SNV neoantigens or
INDEL neoantigens. In addition, we detected a positive
correlation between the ROR of irAEs across tumor types and
the corresponding tumor-specific median CD81 T-cell
fraction. This finding was corroborated to an extent in an
independent ICI-treated NSCLC cohort where patients with
an irAE were noted to have a higher median CD81 T-cell
infiltration. Notably, we were also able to expand on these
findings using amachine learning approach onH&E slides to
identify TILs and correlate these with irAEs. Furthermore,
within our indirect comparison of the TCGA and the FAERS,
we extended our findings and evaluated correlations be-
tween individual irAE types and TIME features. We found
that some irAEs, such as myocarditis and myositis, were
associated with the same TIME features (INDEL neo-
antigens, CD81 T cells, lymphocytes, and plasma cells),
potentially suggesting a common underlying pathophysio-
logic mechanism, a finding that merits further investigation
in future studies. Finally, our bivariatemodel demonstrated a
strong association between the predicted ROR (using the
bivariate model of median INDEL neoantigens 1 CD8 T-cell
fraction) and the observed ROR, suggesting that a composite
of these two baseline variables could help in potentially
stratifyingwhich patientsmay be at the highest risk for irAEs
(Fig 5).

Neoantigens are foreign proteins (perturbed self) that arise
from tumors through various genomic alterations (ie, SNVs,
INDELs, and gene fusions) and, in turn, trigger an immune
response that is not controlled by central and peripheral
tolerance.45 Among different types of genomic alterations,
frameshift mutations resulting from INDELs are more likely
to result in mutation-associated neoantigen generation,
which creates an ideal molecular framework for antitumor
T-cell immunity.45 The correlation between the ROR of irAEs
during ICI therapy with the neoantigen load and with the
corresponding CD81 T-cell fraction across multiple cancer
types suggests that ICIs restore the effector capacity of CD81

T cells against tumor neoantigens while breaking down
tolerance against self (ie, skin rash and myocarditis). It is
plausible that these irAEs from ICIs could be secondary to
cross reactive neoantigens shared by tumors and distant
normal tissue. The more abundant and diverse the tumor
neoantigens, themore likely they will bemimicked by normal
tissue neoantigens and likely result in cross-reactivity be-
cause of a clonal T-cell population, manifesting as irAEs.46

Notably, our composite analysis for TIME features showed
enhanced ROR predictive performance when factoring both
median INDEL neoantigen count and CD81 T-cell fraction
compared with each factor’s performance alone or in
combination with SNV neoantigens. Compared with SNV
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FIG 3. Associations between ROR of single irAEs and TIME parameters during anti–CTLA-4, anti–PD-1, anti–PD-L1, or combination
therapy. (A) Pearson correlation coefficients (r) for the examined TIME parameters and seven specific irAEs. The significance of the
correlation is indicated by asterisk (*.005 ≤ P < .05; **.0005 ≤ P < .005; ***P < .0005), (B) rash versus INDEL neoantigens, (C) myocarditis
versus CD81 T cells, (D) rash versus CD81 T cells, and (E) myocarditis versus INDEL neoantigens. The straight lines represent the linear fit.
Circle size and color represent the total number of FAERS cases for each cancer type and are shown at the top left of the figure. In the
correlation analysis, we considered cancer types only for which there were at least 100 cases of FAERS and at least 100 cases in the
Immune Landscape of Cancer data set. Pearson correlation coefficients (r) and (continued on following page)

8 | © 2024 by American Society of Clinical Oncology

Kerepesi et al

D
ow

nl
oa

de
d 

fr
om

 a
sc

op
ub

s.
or

g 
by

 S
em

m
el

w
ei

s 
U

ni
ve

rs
ity

 (
E

gy
et

em
) 

on
 F

eb
ru

ar
y 

23
, 2

02
4 

fr
om

 1
93

.2
24

.0
49

.1
64

C
op

yr
ig

ht
 ©

 2
02

4 
A

m
er

ic
an

 S
oc

ie
ty

 o
f 

C
lin

ic
al

 O
nc

ol
og

y.
 A

ll 
ri

gh
ts

 r
es

er
ve

d.
 



D

0

10

20

30

40

50

60

70

irAEs No irAEs

Pr
op

or
tio

n 
of

 P
at

ie
nt

s 
W

ith
 T

um
or

s 
Ha

vi
ng

 
Hi

gh
 T

IL
s 

(%
)

P = .005

59.7

44

irAEs

irAEs (n = 139)

No irAEs (n = 239)

B

irAEs No irAEs

P = .90

irAEs

Presence (n = 61)

Absence (n = 95)

0

25

50

75

100

PD
-L

1 
TP

S 
(%

)

C

P = .015

irAEs No irAEs

irAEs

irAEs (n = 139)

No irAEs (n = 239)

10

100

1,000

TI
Ls

 (c
ou

nt
/m

m
2 )

A

CD8+ PD-1+ CD8+
PD-1+

FOXP3+Immune Cell
Subset

P = .051 P = .17 P = .47 P = .25
irAEs

Presence (n = 61)

Absence (n = 95)

1

10

100

1,000

In
tra

tu
m

or
al

 Im
m

un
e

 (c
el

ls
/m

m
2 )

E

P = .028

TIL-high (>median)

TIL-low (�median)

1

0.8

0.6

0.4

0.2

0Cu
m

ul
at

iv
e 

In
ci

de
nc

e 
of

 ir
AE

s

0 3 6

Time (months)

9 12

FIG 4. (A) Density of intratumoral CD81, PD-11, CD81PD11, and FOXP31 cells (cells/mm2) in patients treated with the PD-(L)1 blockade with
versus without irAEs. (B) PD-L1 expression levels by immunohistochemistry in patients treated with the PD-(L)1 blockade with versus without
irAEs. (C) TIL density (cells/mm2) as assessed bymachine learning on H&E digitalized slides. (D) Bar chart showing the proportion of patients with
tumors having high (≥median) versus low (<median) TILs as assessed by machine learning in patients with versus without irAEs. (E) In the DFCI
NSCLC cohort, high TIL density was found to be associated with a higher cumulative incidence of irAEs (Fine-Gray P 5 .028). DFCI, Dana-Farber
Cancer Institute; H&E, Hematoxylin and Eosin; irAE, immune-related adverse event; NSCLC, non–small-cell lung cancer; TIL, tumor-infiltrating
lymphocyte; TPS, tumor proportion score.

FIG 3. (Continued). the corresponding P values are also shown. Anti–CTLA-4, anti–cytotoxic T-cell lymphocyte antigen-4; FAERS, Food
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neoantigens, INDEL mutations often lead to more immuno-
genic mutations as one study reported that neoantigens de-
rived from INDEL mutations were nine times more enriched
for mutant-specific binding compared with nonsynonymous
SNV-derived neoantigens in renal cancers.47

Using a similar approach, Zhang et al also analyzed large-
scale pharmacovigilance data of irAEs from the FAERS and
separate TCGA multiomics data. However, their analysis
from the FAERS database was restricted to irAEs because of
anti–PD-1 therapy only,32 whereas our data set for ICIs is not
restricted to anti–PD-1 alone but includes anti–CTLA-4 and
ICI combinations as well. They found that dendritic cell
abundance strongly correlated with irAE risk, followed by
TMB among established immunogenomic factors. Consis-
tent with our current study, they also found a significant
correlation of irAEs with CD81 T cells and neoantigen load.

Our study highlights that deconvoluting the role of baseline
TIME features across tumor types that may contribute to
distinct irAEs will be essential for developing relevant risk
stratification and mitigation strategies to improve patient
outcomes. Furthermore, the baseline repertoire of the an-
tigen load present on tumors that overlaps with healthy
tissue resulting in ICI-induced cross-reactive autoimmunity
needs to be further elucidated. Current initiatives such as the

National Cancer Institute-Alliance irAE Biorepository study
(Alliance 151804)48 or the South Western Oncology Group
S2013: Immune Checkpoint Inhibitor Toxicity study (Clin-
icalTrials.gov identifier: NCT04871542) will be crucial for
further evaluating these biomarker correlations using bio-
banked samples at baseline and at the time of irAEs.

The link between irAE occurrence and ICI efficacy has
been discussed in previous work, including clinical trials.
Eggermont et al50 conducted a post hoc analysis using data
from the phase 3 KEYNOTE-054 melanoma trial in the ad-
juvant setting, comparing pembrolizumab with placebo.
They reported a prolonged recurrence-free survival (RFS) in
pembrolizumab-treated patients with irAE occurrences
compared with those without irAEs after accounting for
immortal time bias related to the duration of therapy and
treatment exposure. Interestingly, when compared with the
placebo arm, RFS reduction in the pembrolizumab arm was
more substantial after the onset of an irAE thanbefore an irAE,
suggesting a relationshipbetweenantigencross-reactivity for
irAEs and ICI outcomes. Others have demonstrated shared
antigenicity and TCR clonality between NSCLC biopsies and
autoimmune skin lesions in ICI-treated patients with better
outcomes,51 providing evidence for shared mechanisms be-
tween mounting a response to ICIs and developing irAEs. The
identified biomarkers in our study have been shown to be
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Our findings highlight a potential role for TIME parameters, specifically INDEL neoantigens and

baseline-immune infiltration, in predicting the occurrence of irAEs in ICI-treated tumors and enabling optimal

irAE risk stratification of patients.
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successful ICI efficacy indicators. For instance, high INDEL
mutation rates were associated with favorable overall and
progression-free survival rates in patients with gastric cancer
treated with nivolumab,52 whereas frameshift INDELs were
significantly correlated with ICI response across multiple
solid tumors.47,53 Furthermore,wehave previously shown that
INDELs can complement TMB in predicting outcomes to ICI,
especially in microsatellite stable/TMB-low tumors.54 Simi-
larly, our previous work, alongside other studies, highlighted
the potential predictive value of TILs in identifying both re-
sponse and survival benefit.44,55,56

This study serves as a proof of concept but is compounded by
multiple limitations. First, irAE frequency and TIME features
are tested in separate data sets (FAERS v TCGA). Second,
neoantigen load and immune cell fractions in the TCGA
data are estimated on the basis of RNA sequence data rather
than directly measuring on baseline tumors of patients who
developed irAEs. In addition, our correlation analysis was
limited to TIME features with at least 100 cases, which
resulted in variability in included cancers for each analysis.
As a result, our composite bivariate model only included
cancers with all TIME features (n 5 17). Third, the type and
association of irAEs in FAERS could be limited to some degree

since the complete source documentation and causal attri-
butions for these are not available for cross-checking. Con-
sidering that the FAERS database reports reactions (adverse
events) and reaction outcomes (seriousness) for each case
rather than for each drug, one of the caveats to consider is that
we cannot attribute these reactions/outcomes to the ICIs with
certainty as they might be the result of other coadministered
drugs or the underlying disease in the samepatient. This could
result in inflation of irAEs to some extent. Finally, for the
DFCI cohort, the potential for immortal time bias is high in an
observational study reporting irAEs. People are alsomore likely
to have responded to ICIs and might have developed irAEs
because of longer ICI exposure. Ideally, one would need to
address this with a landmark analysis or a logistic regression
modeling for irAEs.

Given the morbidity and mortality associated with irAEs,
incorporating a precision immunotherapy approach by ac-
counting for baseline tumor biomarkers, patient risk factors,
and pharmacovigilance data could be of immense value.57

Such an approach of stratified precision immunotherapy
could facilitate a balance between limiting toxicity without
compromising efficacy by matching the right patient to the
right immunotherapy.
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